Overview

- **Research topic:** Sketch-based 3D model retrieval
 - An intuitive user interface scheme
 - Promising in: game design, 3D animation and human computer interaction, etc.

- **Motivation:** Big semantic gap exists between traditional human-drawn 2D sketches and 3D models
 - 2D sketch: an iconic representation of an object
 - 3D model: accurate representation of the geometry information
 - Constraining a sketch to two dimensions limits the 3D information that can be communicated:
 - Creates a huge semantic gap between 2D sketch and 3D model
 - Makes 2D sketch-based 3D model retrieval very challenging

- **Proposed:** 3D sketch-based 3D model retrieval
 - 3D sketch
 - Encodes 3D information, depth and features of more facets of the object
 - Includes the salient 3D feature lines of its counterpart of 3D models
 - An initial study on 3D sketching
 - Proposes a novel 3D sketch-based 3D model retrieval system

- **Research results:**
 - Promising retrieval performance has been achieved in experiments based on
 - 300 collected 3D sketches (Kinect300)
 - A recent large scale sketch-based 3D shape retrieval benchmark (SHREC13STB)

- **Contributions:**
 - A novel 3D sketching virtual drawing "board" (software) is proposed and implemented
 - Allows users to freely draw 3D sketches in the air (a real 3D space)
 - Allows users to freely draw 3D sketches in the air (a real 3D space)
 - Contains both online and offline processes
 - Consists of three major components: data processing, feature extraction, and matching
 - A novel 3D sketch-based 3D model retrieval system is introduced for the first time to solve the matching problem between 3D sketches and models

3D Sketching

- **Considerations:**
 - Target: a smart, user-friendly, and inexpensive 3D sketching virtual drawing "board"
 - Using Microsoft Kinect
 - A popular and low cost motion sensing input device
 - Offers a built-in color VGA video camera, depth sensor, and multi-array microphone
 - Supporting a voice-activated Kinect-based 3D sketching Graphical User Interface (GUI)
 - Enables sketching and retrieval
 - Functionality:
 - Not only tracks the movement of a user's hand, but also supports voice commands
 - e.g. start, left/ right (hand), pause, resume, front/side view, search, and reset
 - A Kalman filter is applied to combat the noise due to shaking of hand

3D Sketching (Cont.)

- **Overview:**
 - An efficient 3D sketch-based 3D model retrieval system
 - Contains both online and offline processes
 - Consists of three major components: data processing, feature extraction, and matching

Experiments

- **Kinect300 3D sketch dataset collection**
 - Based on the drawing "board", we have collected a 3D sketch dataset named Kinect300:
 - 300 sketches in 3 object categories, each with 10 sketches
 - Collected from 31 users (4 females and 13 males) with an average age of 21 years

- **3D sketch-based 3D model retrieval**
 - Evaluation metrics:
 - Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), E-Measure (E), Discounted Cumulative Gain (DCG) and Precision-Rank (PR)
 - Query set: a hand-drawn 3D sketch from Kinect300
 - Target dataset: SHREC13STB benchmark [2] (target dataset only):
 - 1,258 target 3D models of 90 classes

- **Performance:**
 - Efficiency: only 1.22 sec to perform a 3D model retrieval given a hand-drawn 3D sketch
 - Accuracy:

<table>
<thead>
<tr>
<th>NN</th>
<th>FT</th>
<th>ST</th>
<th>B</th>
<th>DCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.029</td>
<td>0.021</td>
<td>0.038</td>
<td>0.021</td>
<td>0.204</td>
</tr>
</tbody>
</table>

 (a) Simple
 (b) Complicated

 - Sketch-model retrieval is a challenging task
 - Still much room left for further improvement in this task
 - More descriptive shape descriptors are desired for further exploration

References

Acknowledgement

This work is supported by Army Research Office grant W911NF-12-1-0007, NSF CNS-1135893 and NSF OCI-1062439.